Publications

  1. McCann, C. et al., (2017) Transplantation of enteric nervous system stem cells rescues nitric oxide synthase deficient mouse colon. Nature Communications 8 (15937).
  2. Janda, C. et al., (2017) Surrogate Wnt agonists that phenocopy canonical Wnt and β-catenin signalling. Nature 545, (7653) 234-237.
  3. Mavila N, et al., (2017) Functional Human and Murine Tissue‐Engineered Liver Is Generated from Adult Stem/Progenitor Cells. Stem Cells Translational Medicine 1, 238-248.
  4. Trecartin, A. et al., (2016) Establishing Proximal and Distal Regional Identities in Murine and Human Tissue-Engineered Lung and Trachea. Tissue Engineering Part C Methods 11, 1049-1057.
  5. Tabata, Y., Lutolf M. (2017) Multiscale microenvironmental perturbation of pluripotent stem cell fate and self organization. Nature Publishing Group 7-1.
  6. Huch M. et al., (2017) The hope and the hype of organoid research, Development 144-6, pp 938-941.
  7. Yui S. et al., (2018), YAP/TAZ-dependent reprogramming of colonic epithelium links ECM remodeling to tissue regeneration, Cell Stem Cell 22, pp 35–49.
  8. Arias A., Lutolf M., (2018) Mammalian body plan engineering: Lessons and challenges, Current Opinion in Systems Biology 50-56.
  9. Rossi G. et al., (2018) Progress and potential in organoid research, Nature Reviews Genetics 19-11, pp. 671-687.
  10. Guiu J. et al. (2019), Tracing the origin of adult intestinal stem cells, Nature 570, pp. 107–111.
  11. Clevers H. et al (2019), Tissue-Engineering the Intestine: The Trials before the Trials, Cell Stem Cell 6, pp. 855-859
  12. Antas P. et al, (2019), SH3BP4 Regulates Intestinal Stem Cells and Tumorigenesis by Modulating β-Catenin Nuclear Localization, Cell Reports 26/9, pp. 2266-2273.e4
  13. Canu G. et al, (2020) Analysis of endothelial-to-haematopoietic transition at the single cell level identifies cell cycle regulation as a driver of differentiation, Genome Biology 21/1
  14. Serrano F. et al, (2019) A Novel Human Pluripotent Stem Cell-Derived Neural Crest Model of Treacher Collins Syndrome Shows Defects in Cell Death and Migration, Stem Cells and Development 28/2, pp. 81-100
  15. Rezakhani S. et al, (2020) Low‐Defect Thiol‐Michael Addition Hydrogels as Matrigel Substitutes for Epithelial Organoid Derivation, Advanced Functional Materials, pp. 2000761
  16. Baulies A. et al, (2020) The Transcription Co-Repressors MTG8 and MTG16 Regulate Exit of Intestinal Stem Cells From Their Niche and Differentiation Into Enterocyte vs Secretory Lineages, Gastroenterology
  17. Giobbe G. et al, (2019) Extracellular matrix hydrogel derived from decellularized tissues enables endodermal organoid culture, Nature Communications, 10/1
  18. Kraiczy J. et al, (2018) DNA methylation defines regional identity of human intestinal epithelial organoids and undergoes dynamic changes during development, Gut, 68/1, pp. 49-61
  19. Meran, L., Massie, I., Campinoti, S. et al. (2020), Engineering transplantable jejunal mucosal grafts using patient-derived organoids from children with intestinal failure. Nat Med 26, 1593–1601. https://doi.org/10.1038/s41591-020-1024-z.
  20. Novellasdemunt L. et al, (2019) NEDD4 and NEDD4L regulate Wnt signalling and intestinal stem cell priming by degrading LGR5 receptor, The EMBO Journal, 39/3
  21. Nikolaev, M., Mitrofanova, O., Broguiere, N. et al. (2020), Homeostatic mini-intestines through scaffold-guided organoid morphogenesis. Nature 585, 574–578. https://doi.org/10.1038/s41586-020-2724-8.
  22. Kraiczy J. et al, (2019) Genome-Wide Epigenetic and Transcriptomic Characterization of Human-Induced Pluripotent Stem Cell–Derived Intestinal Epithelial Organoids, Cellular and Molecular Gastroenterology and Hepatology, 7/2, pp. 285-288
  23. Elmentaite, R., et al (2020) Single-Cell Sequencing of Developing Human Gut Reveals Transcriptional Links to Childhood Crohn’s Disease, Developmental Cell, 55 (6), pp. 771-783
  24. Giobbe, G., et al (2021) SARS-CoV-2 infection and replication in human gastric organoids, Nature Communications, 12 (6610)
  25. Monteil, V., et al (2020) Inhibition of SARS-CoV-2 Infections in Engineered Human Tissues Using Clinical-Grade Soluble Human ACE2, Cell, 181 (4), pp. 905-913